ITGC Publications
Adams, J. R., J. S. Johnson, S. J. Roberts, P. J. Mason, K. A. Nichols, R. A. Venturelli, K. Wilcken, G. Balco, B. Goehring, B. Hall, J. Woodward, and D. H. Rood. 2022. New 10Be exposure ages improve Holocene ice sheet thinning history near the grounding line of Pope Glacier, Antarctica. The Cryosphere, 16, 4887–4905, 2022 |
|
Alley, K. E., C. T. Wild, A. Luckman, T. A. Scambos, M. Truffer, E. C. Pettit, A. Muto, B. Wallin, M. Klinger, T. Sutterley, S. F. Child, C. Hulen, J. T. M. Lenaerts, M. Maclennan, E. Keenan, and D. Dunmire. 2021. Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf. The Cryosphere 15, 5187–5203. |
|
Alley, K.E., T.A. Scambos, and R.B. Alley. 2022. The Role of Channelized Basal Melt in Ice-Shelf Stability: Recent Progress and Future Priorities. Annals of Glaciology 63, no. 87–89: 18–22. |
|
Alley, R. B., K. A. Emanuel, and F. Zhang. 2019. Advances in weather prediction. Science 363: 342-344. |
|
Alley, R. B., N. Holschuh, D. R. MacAyeal, B. R. Parizek, L. Zoet, K. Riverman, et al. 2021. Bedforms of Thwaites Glacier, West Antarctica: Character and origin. Journal of Geophysical Research: Earth Surface, 126, e2021JF006339. |
|
Alley, R., K. Cuffey, and L. Zoet. 2019. Glacial erosion: Status and outlook. Annals of Glaciology 60(80): 1-13. |
|
Balco, G., N. Brown, K. Nichols, R. A. Venturelli, J. Adams, S. Braddock, S. Campbell, B. Goehring, J. S. Johnson, D. H. Rood, K. Wilcken, B. Hall, and J. Woodward. 2023. Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene. The Cryosphere 17, 1787–1801. |
|
Barnes, J. M., and G. H. Gudmundsson. 2022. The predictive power of ice sheet models and the regional sensitivity of ice loss to basal sliding parameterisations: a case study of Pine Island and Thwaites glaciers, West Antarctica. The Cryosphere 16, 4291–4304, 2022. |
|
Bart, P. and S. Tulaczyk. 2020. A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo–ice stream. Geology 48 (4): 313-317. |
|
Bassis, J. N. and L. Ultee. 2019. A Thin Film Viscoplastic Theory for Calving Glaciers: Toward a Bound on the Calving Rate of Glaciers. Journal of Geophysical Research 124, 2036– 2055. |
|
Bassis, J. N., and S. B. Kachuck. 2023. Beyond the Stokes Approximation: Shallow Visco-Elastic Ice-Sheet Models. Journal of Glaciology, 2023, 1–12. |
|
Bassis, J. N., B. Berg, A.J. Crawford and D. Benn. 2021. Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372: 1342-1344. |
|
Benn, D. I. and D. E. Sugden. 2021. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Scottish Geographical Journal 136, 2020 issue 1-4. |
|
Benn, D. I., A. Luckman, J. A. Åström, A. J. Crawford, S. L. Cornford, S. L. Bevan, T. Zwinger, R. Gladstone, K. Alley, E. Pettit, and J. Bassis. 2022. Rapid fragmentation of Thwaites Eastern Ice Shelf. The Cryosphere, 16, 2545–2564. |
|
Berg, B., and J. Bassis. 2022. Crevasse advection increases glacier calving. Journal of Glaciology, 68(271), 977-986. |
|
Bett, D. T., A. T. Bradley, C. R. Williams, P. R. Holland, R. J. Arthern and D. N. Goldberg. 2024. Coupled ice–ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector. The Cryosphere Discussions 18, 2653–2675, 2024. |
|
Bevan, S. L., A. J. Luckman, D. I. Benn, S. Adusumilli, and A. Crawford. 2021. Brief Communication: Thwaites Glacier cavity evolution. The Cryosphere Discussions 2021-66. |
|
Bick, I. A., A. F. S. Tate, K. A. Serafin, A. Miltenberger, M. Evans, L. Ortolano, D. Ouyang, and J. Suckale. 2021. Rising seas, rising inequity? Communities at risk in the San Francisco Bay Area and implications for adaptation policy. Earth's Future. 9:7. |
|
Bodart, J.A., R. G. Bingham, D. A. Young, J. A. MacGregor, D. W. Ashmore, E. Quartini, A. S. Hein, D. G. Vaughan, and D. D. Blankenship. 2023. High mid-Holocene accumulation rates over West Antarctica inferred from a pervasive ice-penetrating radar reflector. The Cryosphere TC, 17, 1497–1512. |
|
Boehme, L. and I. Rosso. 2021. Classifying Oceanographic Structures in the Amundsen Sea, Antarctica. Geophysical Research Letters 48:5, e2020GL089412. |
|
Book, C., M. J. Hoffman, S. B. Kachuck, T. R. Hillebrand, S. F. Price, M. Perego, and J. N. Bassis. 2022. Stabilizing effect of bedrock uplift on retreat of Thwaites Glacier, Antarctica, at centennial timescales. Earth and Planetary Science Letters. Volume 597, 1 November 2022, 117798. |
|
Bortolotto, G.A., K. Heywood, and L. Boehme. 2002 (preprint). Weddell seals near the fastest melting glacier in Antarctica prefer shallow, coastal and partially ice-covered waters. bioRxiv. |
|
Braddock, S., B.L. Hall, J.S. Johnson, G. Balco, M. Spoth, P.L. Whitehouse, S. Campbell, B.M. Goehring, D.H. Rood and J. Woodward. 2022. Relative sea-level data preclude major late Holocene ice-mass change in Pine Island Bay. Nat. Geosci. 15, 568–572 (2022). |
|
Braddock, S., R. A. Venturelli, K. Nichols, E. Moravec, G. V. Boeckmann, S. Campbell, G. Balco, R. Ackert, D. Small, J. S. Johnson, N. Dunbar, J. Woodward, S. Mukhopadhyay, and B. Goehring. 2024. Lessons Learned from Shallow Subglacial Bedrock Drilling Campaigns in Antarctica. Annals of Glaciology 2024, 1–11. |
|
Bushuk, M., Holland, D., Stanton, T., Stern, A., and Gray, C. 2019. Ice scallops: a laboratory investigation of the ice–water interface. Journal of Fluid Mechanics 873, 942-976. |
|
Chaput, J., R. Aster, M. Karplus, and N. Nakata. 2022. Ambient high-frequency seismic surface waves in the firn column of central west Antarctica. Journal of Glaciology, 68(270), 785-798. |
|
Chaput, J., Rick Aster, Marianne Karplus, Nori Nakata. Ambient high-frequency seismic surface waves in the firn column of central west Antarctica. 2022. Journal of Glaciology. 1-14. |
|
Christie, F. D. W., E. J. Steig, N. Gourmelon, S. F. B. Tett, and R. G. Bingham. 2023. Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica. Nature Communications 14:93. |
|
Clark, R.W., J.S. Wellner, C. Hillenbrand, R.L. Totten, J.A. Smith, L.E. Miller, R.D. Larter, K.A. Hogan, A.G.C. Graham, F.O. Nitsche, A.A. Lehrmann, A.P. Lepp, J.D. Kirkham, V.T. Fitzgerald, G. Garcia-Barrera, W. Ehrmann, and L. Wacker. 2024. Synchronous retreat of Thwaites and Pine Island glaciers in response to external forcings in the presatellite era. Proceedings of the National Academy of Sciences 121 (11) e2211711120. |
|
Clyne, E. R., S. Anandakrishnan, A. Muto, R. B. Alley, and D. E. Voigt. 2020. Interpretation of topography and bed properties beneath Thwaites Glacier, West Antarctica using seismic reflection methods. Earth and Planetary Science Letters 550, 116543. |
|
Clyne, Elisabeth. Geophysical Investigation of Basal and Hydrologic Conditions in Glaciers and Ice Shelves. 2021. The Pennsylvania State University ProQuest Dissertations Publishing 2021. 28841701. |
|
Crawford, A.J., D.I. Benn, J. Todd, et al. 2021. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat Commun 12, 2701. |
|
Das, I., M. Morlighem, J. Barnes, G.H. Gudmundsson, D. Goldberg, and T. Dias do Santos. 2023. In the Quest of a Parametric Relation Between Ice Sheet Model Inferred Weertman's Sliding-Law Parameter β2 and Airborne Radar-Derived Basal Reflectivity Underneath Thwaites Glacier, Antarctica. Geophysical Research Letters, 50, e2022GL098910. |
|
Davis, P.E.D., K.W. Nicholls, D.M. Holland, et al. 2023. Suppressed basal melting in the eastern Thwaites Glacier grounding zone. Nature 614, 479–485 (2023). |
|
De Rydt, J., Reese, R., Paolo, F. S., and Gudmundsson, G. H. 2021. Drivers of Pine Island Glacier speed-up between 1996 and 2016. The Cryosphere 15, 113–132. |
|
Dias dos Santos, T., M. Morlighem, and D. Brinkerhoff. 2022. A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model. The Cryosphere 16, 179–195. |
|
dos Santos, T. D., M. Morlighem, and H. Seroussi. 2021. Assessment of numerical schemes for transient, finite-element ice flow models using ISSM v4.18. Geosci. Model Dev., 14: 2545–2573. |
|
Dotto, T.S., K.J. Heywood, R.A. Hall, et al. 2022. Ocean variability beneath Thwaites Eastern Ice Shelf driven by the Pine Island Bay Gyre strength. Nat Commun 13, 7840. |
|
Eayrs, C., Li, X., Raphael, M.N. et al. 2021. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021). |
|
Gerli, C., Rosier, S., and Gudmundsson, G. H. 2023. Activation of existing surface crevasses has limited impact on grounding line flux of Antarctic ice streams. Geophysical Research Letters, 50, e2022GL101687. |
|
Goldberg, D. N., T. A. Smith, S. HK Narayanan, et al. 2020. Bathymetric influences on Antarctic ice-shelf melt rates. ESS Open Archive: October 22, 2020. |
|
Graham, A. G. C., A. Wåhlin, K. A. Hogan, F. O. Nitsche, K. J. Heywood, R. L. Totten, J. A. Smith, C.-D. Hillenbrand, L. Simkins, J. B. Anderson, J. S. Wellner, and R. D. Larter. 2022. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 15, 706–713. |
|
Graham, A.G.C., A., Wåhlin, K. A. Hogan, et al. 2022. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nature Geoscience 15, 706–713. |
|
Gudmundsson, G. H., J. M. Barnes, D. N. Goldberg, and M. Morlighem. 2023. Limited impact of Thwaites Ice Shelf on future ice loss from Antarctica. Geophysical Research Letters 50, e2023GL102880. |
|
Gudmundsson, G.H., F.S. Paolo, S. Adusumilli, and H.A. Fricker. 2019. Instantaneous Antarctic ice‐sheet mass loss driven by thinning ice shelves. Geophysical Research Letters 46, 13,903–13,909. |
|
Herbert, L. C., A.P. Lepp, S. Munevar Garcia, A. Browning, L. M. Simkins, J. Wellner, S. Severmann, C. Hillenbrand, J. S. Johnson, and R. M. Sherrell. 2023. Volcanogenic fluxes of iron from the seafloor in the Amundsen Sea, West Antarctica. Marine Chemistry vol 253, 104250. |
|
Hoffman, A. O., K. Christianson, D. Shapero, B. E. Smith, and I. Joughin. 2020. Brief communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica. The Cryosphere 14, 4603–4609. |
|
Hoffman, A. O., K. Christianson, N. Holschuh, E. Case, J. Kingslake, and R. Arthern. 2022. The Impact of Basal Roughness on Inland Thwaites Glacier Sliding. Geophysical Research Letters 49:14 e2021GL096564. |
|
Hogan, K. A., R. D. Larter, A. G. C. Graham, R. Arthern, J. D. Kirkham, R. Totten Minzoni, T. A. Jordan, R. Clark, V. Fitzgerald, A. K. Wåhlin, J. B. Anderson, C.-D. Hillenbrand, F. O. Nitsche, L. Simkins, J. A. Smith, K. Gohl, J. E. Arndt, J. Hong, and J. Wellner. 2020. Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing. The Cryosphere 14, 2883–2908. |
|
Hogan, K.A., K. L. P. Warburton, A. G. C. Graham, J. A. Neufeld, D. R. Hewitt, J. A. Dowdeswell, and R. D. Larter. 2023. Towards modelling of corrugation ridges at ice-sheet grounding lines. The Cryosphere Volume 17, issue 7. |
|
Holland, D. M., K. W. Nicholls, and A. Basinski. 2020. The Southern Ocean and its interaction with the Antarctic Ice Sheet. Science 367.6484, 1326-1330. |
|
Holland, P. R., Bevan, S. L., and Luckman, A. J. 2023. Strong ocean melting feedback during the recent retreat of Thwaites Glacier. Geophysical Research Letters, 50, e2023GL103088. |
|
Holschuh, N., K. Christianson, J. Paden, R.B. Alley, and S. Anandakrishnan. 2020. Linking postglacial landscapes to glacier dynamics using swath radar at Thwaites Glacier, Antarctica. Geology 48 (3): 268–272. |
|
Johnson, J. S., R. A. Venturelli, G. Balco, C. S. Allen, S. Braddock, S. Campbell, B. M. Goehring, B. L. Hall, P. D. Neff, K. A. Nichols, and D. H. Rood, E. R. Thomas, and J. Woodward. 2022. (Preprint) Review article: Existing and potential evidence for Holocene grounding-line retreat and readvance in Antarctica. The Cryosphere Discussions tc-2021-360. |
|
Jordan, T. A., D. Porter, K. Tinto, R. Millan, A. Muto, K. Hogan, R. D. Larter, A. G. C. Graham, and J. D. Pade. 2020. New gravity-derived bathymetry for the Thwaites, Crosson, and Dotson ice shelves revealing two ice shelf populations. The Cryosphere 14, 2869–2882. |
|
Jordan, T.A., S. Thompson, B. Kulessa, and F. Ferraccioli. 2023. Geological sketch map and implications for ice flow of Thwaites Glacier, West Antarctica, from integrated aerogeophysical observations. Science Advances Vol 9, Issue 22. |
|
Kachuck, S., M. Whitcomb, J. Bassis, D. Martin, and S. Price. 2022. Simulating ice-shelf extent using damage mechanics. Journal of Glaciology, 1-12. |
|
Karplus, M.S., T.J. Young, S. Anandakrishnan, J.N. Bassis, E.H. Case, A.J. Crawford, A. Gold, L. Henry, J. Kingslake, A.A. Lehrmann, P.A. Montano, E.C. Pettit, T.A. Scambos, E.M. Sheffield, E.C. Smith, M. Turrin, and J.S. Wellner. 2022. Strategies to Build a Positive and Inclusive Antarctic Field Work Environment. Annals of Glaciology 63, no. 87–89: 125–31. |
|
Kasmalkar, I. G., K. A. Serafin, Y. Miao, I. A. Bick, L. Ortolano, D. Ouyang, and J. Suckale. 2020. When Floods Hit the Road: Resilience to Flood-Induced Commute Disruption in the San Francisco Bay Area and Beyond. Science Advances. 14:2869-2882. |
|
Koellner, S., B. R. Parizek, R. B. Alley, A. Muto, and N. Holschuh. 2019. The impact of spatially-variable basal properties on outlet glacier flow. Earth and Planetary Science Letters 515: 200-208. |
|
Larter, R. D. 2022. Basal Melting, Roughness and Structural Integrity of Ice Shelves. Geophysical Research Letters, 49:4 e2021GL097421. |
|
Lepp A. P., Simkins L. M., Anderson J. B., Clark R. W., Wellner J. S., Hillenbrand C-D., Smith J. A., Lehrmann A. A., Totten R., Larter R. D., Hogan K. A., Nitsche F. O., Graham A. G. C., Wacker L. 2022. Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, Antarctica. Front. Earth Sci. 2022.863200. |
|
Maclennan, M. L. and J. T. M. Lenaerts. 2021. Large-Scale Atmospheric Drivers of Snowfall Over Thwaites Glacier, Antarctica. Geophysical Research Letters 48:17 e2021GL093644. |
|
Maclennan, M. L., J. T. M. Lenaerts, C. A. Shields, A. O. Hoffman, N. Wever, M. Thompson-Munson, A. C. Winters, E. C. Pettit, T. A. Scambos, and J. D. Wille. 2022. Climatology and Surface Impacts of Atmospheric Rivers on West Antarctica. The Cryosphere Discuss [preprint], in review. |
|
Maclennan, M. L., J. T. M. Lenaerts, C. Shields, and J. D. Wille. 2022. Contribution of Atmospheric Rivers to Antarctic Precipitation. Geophysical Research Letters 49:18 e2022GL100585. |
|
Malczyk, G., N. Gourmelen, D. Goldberg, J. Wuite, and T. Nagler. 2020. Repeat Subglacial Lake Drainage and Filling Beneath Thwaites Glacier. Geophysical Research Letters, 47:23, e2020GL089658. |
|
Marschalek, J. W., S. N. Thomson, C.-D. Hillenbrand, P. Vermeesch, C. Siddoway, A. Carter, K. Nichols, D. H. Rood, R. A. Venturelli, S. J. Hammond, J. Wellner, and T. van de Flierdt. 2024. Geological Insights from the Newly Discovered Granite of Sif Island between Thwaites and Pine Island Glaciers.” Antarctic Science, 2024, 1–24. . |
|
Morlighem, M., D. Goldberg, T. Dias dos Santos, J. Lee, and M. Sagebaum. 2021. Mapping the Sensitivity of the Amundsen Sea Embayment to Changes in External Forcings Using Automatic Differentiation. Geophysical Research Letters 48:23 e2021GL095440. |
|
Morlighem, M., Rignot, E., Binder, T. et al. 2020. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137. |
|
Muto, A., R. Alley, Parizek, B. and Anandakrishnan, S. 2019. Bed-type variability and till (dis)continuity beneath Thwaites Glacier, West Antarctica. Annals of Glaciology 1-9. |
|
Muto, A., S. Anandakrishnan, R. Alley, H. Horgan, B. Parizek, S. Koellner, K. Christianson, and N. Holschuh. 2019. Relating bed character and subglacial morphology using seismic data from Thwaites Glacier, West Antarctica. Earth and Planetary Science Letters 507, 199-206. |
|
Neuhaus, S. U., S. Tulaczyk, N. D. Stansell, J. J. Coenen, R. P. Scherer, J. A. Mikucki, R. D. Powell. 2021. Did Holocene climate changes drive West Antarctic grounding line retreat and readvance? The Cryosphere 15, 4655–4673. |
|
Nichols, K. A., D. H. Rood, R. A. Venturelli, G. Balco, J. R. Adams, L. Guillaume, S. Campbell, B. M. Goehring, B. L. Hall, K. Wilcken, J. Woodward, and J. S. Johnson. 2023. Offshore-onshore record of Last Glacial Maximum–to–present grounding line retreat at Pine Island Glacier, Antarctica. Geology 51 (11): 1033–1037. |
|
Ockenden, H., R. G. Bingham, A. Curtis, and D. Goldberg. 2022. Inverting ice surface elevation and velocity for bed topography and slipperiness beneath Thwaites Glacier. The Cryosphere 16, 3867–3887. |
|
Ockenden, H., R.G. Bingham, A. Curtis, and D. Goldberg. 2023. Ice-Flow Perturbation Analysis: A Method to Estimate Ice-Sheet Bed Topography and Conditions from Surface Datasets. Journal of Glaciology, 2023, 1–10. |
|
Post, E., R. B. Alley, T. R. Christensen, M. Macias-Fauria, B. C. Forbes, M. N. Gooseff, A Iler, J. T. Kerby, K. L. Laidre, M. E. Mann, J. Olofsson, J. C. Stroeve, F. Ulmer, R. A. Virginia, and M. Wang. 2019. The polar regions in a 2°C warmer world. Science Advances 5:12. |
|
Räss, L., Licul, A., Herman, F., Podladchikov, Y. Y., and Suckale, J. 2020. Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs). Geosci. Model Dev., 13, 955–976. |
|
Rignot, E. 2021. Sea level rise from melting glaciers and ice sheets caused by climate warming above pre-industrial levels. Uspekhi Fizicheskih Nauk |
|
Riverman, K., S. Anandakrishnan, R. Alley, N. Holschuh, C. Dow, A. Muto, B. Parizek, K. Christianson, and L. Peters. 2019. Wet subglacial bedforms of the NE Greenland Ice Stream shear margins. Annals of Glaciology 60(80), 91-99. |
|
Rosier, S. H. R., C. Y. S. Bull, W. L. Woo, and G. H. Gudmundsson. 2023. Predicting ocean-induced ice-shelf melt rates using deep learning. The Cryosphere, 17, 499–518. |
|
Rosier, S. H. R., R. Reese, J. F. Donges, J. De Rydt, G. H. Gudmundsson, and R. Winkelmann. 2021. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. The Cryosphere, 15, 1501–1516, 2021. |
|
Savidge E., T. Snow, M.R. Siegfried, Y. Zheng, A. B. Villas Bôas, G.A. Bortolotto, L. Boehme, and K.E. Alley. 2023. Wintertime Polynya Structure and Variability From Thermal Remote Sensing and Seal-Borne Observations at Pine Island Glacier, West Antarctica. IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-13, Art no. 4300813. |
|
Schelpe, C. A. O. and G. H. Gudmundsson. 2023. Incorporating horizontal density variations into large-scale modeling of ice masses. Journal of Geophysical Research: Earth Surface 128, e2022JF006744. |
|
Schmidt, B. E., P. Washam, P. E. D. Davis, et al. 2023. Heterogeneous melting near the Thwaites Glacier grounding line. Nature 614, pages 471–478 (2023) |
|
Scott, W., S. Kramer, P. Holland, K. Nicholls, M. Siegert, and M. Piggott. 2023. Towards a fully unstructured ocean model for ice shelf cavity environments: model development and verification using the Firedrake finite element framework. Ocean Modeling, vol 182, 102178. |
|
Slater, D. A., D. I. Benn, T. R. Cowton, J. N. Bassis, J. A. Todd. 2021. Calving Multiplier Effect Controlled by Melt Undercut Geometry. Journal of Geophysical Research: Earth Surface 26:7. |
|
Summers, P. T., C. W. Elsworth, C. F. Dow, and J. Suckale. 2023. Migration of the shear margins at Thwaites Glacier: Dependence on basal conditions and testability against field data. Journal of Geophysical Research: Earth Surface, 128, e2022JF006958. |
|
Thiago Dias dos Santos, Jowan M. Barnes, Daniel N. Goldberg, G. Hilmar Gudmundsson, Mathieu Morlighem. 2021. Drivers of Change of Thwaites Glacier, West Antarctica, Between 1995 and 2015. Geophysical Research Letters 48:20 e2021GL093102. |
|
Ultee, L. and J. N. Bassis. 2020. SERMeQ Model Produces a Realistic Upper Bound on Calving Retreat for 155 Greenland Outlet Glaciers. Geophysical Research Letters 47:21. e2020GL090213. |
|
Wåhlin, Anna, K. E. Alley, C. Begeman, O. Hegrenaes, X. Yuan, A. G. C. Graham, K. Hogan, P. E. D. Davis, T. S. Dotto et al. 2024. Swirls and scoops: Ice base melt revealed by multibeam imagery of an Antarctic ice shelf. Science Advances 10, eadn9188. |
|
Watkins, R. H., J. N. Bassis, and M. D. Thouless. 2021. Roughness of Ice Shelves Is Correlated With Basal Melt Rates. Geophysical Research Letters 48:21 e2021GL094743. |
|
Wheel, I., D. I. Benn, A. J. Crawford, J. A., Todd, and T. Zwinger. 2024. A new 3D full-Stokes calving algorithm within Elmer/Ice (v9.0), EGUsphere [preprint] 2024. |
|
Wild, C. T., K. E. Alley, A. Muto, M. Truffer, T. A. Scambos, and E. C. Pettit. 2022. Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica. The Cryosphere 16, 397–417, 2022. |
|
Wild, C. T., T. S. Dotto, K. E. Alley, et al. A Tale of Two Ice Shelves: Contrasting Behavior During the Regional Destabilization of the Dotson-Crosson Ice Shelf System, West Antarctica. ESS Open Archive June 08, 2022. |
|
Yoon, S.T., W. S. Lee, S.H. Nam, C.-K. Lee, S. Yun, K. Heywood, L. Boehme, Y. Zheng, I. Lee, Y. Choi, A. Jenkins, E. K. Jin, R. Larter, J. Wellner, P. Dutrieux, and A. T. Bradley. 2022. Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf. Nature Communications 13: 306 (2022). |
|
Young, T. J., D. M. Schroeder, T. M. Jordan, P. Christoffersen, S. M. Tulaczyk, R. Culberg, and N. L. Bienert. 2021. Inferring ice fabric from birefringence loss in airborne radargrams: Application to the eastern shear margin of Thwaites Glacier, West Antarctica. JGR Earth Surface. |
|
Young, T.J., C. Martín, P. Christoffersen, D. M. Schroeder, S. M. Tulaczyk, E. J. Dawson. 2021. Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide deep ice core site. The Cryosphere. 15: 4117-4133. |
|
Zhang, Z., N. Nakata, M. Karplus, G. Kaip, and J. Yi. 2022. Shallow ice-sheet composite structure revealed by seismic imaging near the West Antarctic Ice Sheet (WAIS) Divide Camp. Journal of Geophysical Research: Earth Surface 127, e2022JF006777. |
|
Zheng, Y., D. P. Stevens, K. J. Heywood, B. G. M. Webber, and B. Y. Queste. 2022. Reversal of ocean gyres near ice shelves in the Amundsen Sea caused by the interaction of sea ice and wind. The Cryosphere 16, 3005–3019, 2022. |
|
Zheng, Y., Heywood, K.J., Webber, B.G.M. et al. 2021. Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea. Commun Earth Environ 2, 40 (2021). |
|
Zoet, L. K., J. E. Rawling III, J. B. Woodard, N. Barrette, and D. M. Mickelson. 2021. Factors that contribute to the elongation of drumlins beneath the Green Bay Lobe, Laurentide Ice Sheet. Earth Surface Processes and Landforms 46:13 2540-2550. |
|
Zoet, L. K., M. J. Ikari, R. B. Alley, C. Marone, S. Anandakrishnan, B. M. Carpenter, et al. 2020. Application of constitutive friction laws to glacier seismicity. Geophysical Research Letters, 47, e2020GL088964. |